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The proof of this fact is similar to the proof of Lemma (9.6). For our purposes, the
factor 3 could be replaced by any positive real number less than 1. This inequality
shows us that, as z” winds » times around the circle of radius r", f(z} also winds n
times around the origin. A good way to visualize this conclusion is with the dog-on-
a-leash model. If someone walks a dog n times around the block, the dog also goes
around »n times, though following a different path. This will be true provided that the
leash is shorter than the radius of the block. Here z” represents the position of the
person at the time 8, and f(z) represents the position of the dog. The length of the
leash is 5r".

We now vary the radius r. Since f is a continuous function, the image f(C)
will vary continuously with . When the radius r is very small, f(C,) makes a small
loop around the constant term ao of f. This small loop won’t wind around the origin
at all. But as we just saw, f(C,) winds n times around the origin if r is large enough.
The only explanation for this is that for some intermediate radius r’, f(C,) passes
through the origin. This means that for some point @ on the circle C», f(a) = 0.
This number « is a root of f.

Note that all # loops have to cross the origin, which agrees with the fact that a
polynomial of degree » has n roots.

I don’t consider this algebra,
but this doesn’t mean that algebraists can’t do it.

Garrett Birkhoff

EXERCISES

1. Examples of Fields

15.8

1.|Let F be a field. Find all elements ¢ € F such that a = a™'.
2.|Let K be a subfield of C which is not contained in R. Prove that K is a dense subset of C.
3.

Let R be an integral domain containing a field F as subring and which is finite-dimen-
sional when viewed as vector space over F. Prove that R is a field.

4.|Let F be a field containing exactly eight elements. Prove or disprove: The characteristic

of Fis?2.

2. Algebraic and Transcendental Elements

22.8

1.| Let c be the real cube root of 2. Compute the irreducible polynomial for 1 + a? over Q.
2.| Prove Lemma (2.7), that (1,a,a?,...,a” ") is a basis of F[a].

.| Determine the irreducible polynomial for ¢ = V3 + V5 over each of the following
fields.
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22.8

4.

5.

Let a be a complex root of the irreducible polynomial x> — 3x + 4. Find the inverse of
a’ + a + 1 in F(a) explicitly, in the form a + ba + ca?, a,b,c € Q.

let K= F(a), where « is a root of the irreducible polynomial f(x) =
x®+ apx®™ '+ -+ + a;x + ao. Determine the element &' explicitly in terms of a
and of the coefficients a;.

Let B = V2, where { = ¢*™/3 and let K = Q(B). Prove that -1 can not be written as
a sum of squares in K.

3. The Degree of a Field Extension

1.

2.
3.

4.

S.
6.

8.

9.

10.

11.

12.

13.

14.

15.

Let F be a field, and let « be an element which generates a field extension of F of degree
5. Prove that «? generates the same extension.

Let { = ¢*™/7 and let § = ¢*™/5. Prove that n € Q({).

Define ¢, = ¢>™/%_ Find the irreducible polynomial over @ of (@) &4, (b) &, (€) s,
(d) &, (€) Cio, (F) Lo

Let {, = 2™/, Determine the irreducible polynomial over Q(f3) of (@) &, (b) &,
(©) {in.

Prove that an extension X of F of degree | is equal to F.

Let a be a positive rational number which is not a square in Q2. Prove that Va has degree
4 over Q.

J Decide whether or not i is in the field (@) Q(V~=2), (b)) Q(V=2), (¢) Q(x), where

a’+a+1=0.

Let X be a field generated over F by two elements a, 8 of relatively prime degrees m, n
respectively. Prove that [K: F] = mn.

Let a, B be complex numbers of degree 3 over @@, and let K = Q{«a, ). Determine the
possibilities for [X: Q).

Let o, B be complex numbers. Prove that if & + B and af are algebraic numbers, then
a and B are also algebraic.

Let «, 8 be complex roots of irreducible polynomials f(x), g (x) € Q[x]. Let F = Q[a]
and K = Q[B]. Prove that f(x) is irreducible in K if and only if g(x) is irreducible in F.
(a) Let F C F' C K be field extensions. Prove that if [K:F] = [K:F'], then F = F"'.
(b) Give an example showing that this need not be the case if F is not contained in F'.
Let ay,..., o, be elements of an extension field X of F, and aSsume that they are all alge-
braic over F. Prove that F{a,,...,ax) = Flai,..., al.

Prove or disprove: Let «, 3 be elements which are algebraic over a field F, of degrees
d, e respectively. The monomials afBj with i = 0,...,d = 1,j=0,...,e — | form a
basis of F(a, B) over F.

Prove or disprove: Every algebraic extension is a finite extension.

4. |Constructions with Ruler and Compass

22.8 1.

2.

Express cos 15° in terms of square roots.

Prove that the regular pentagon can be constructed by ruler and compass (a) by field
theory, and (b) by finding an explicit construction.
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10.

11.

12.

13.

*14.

Derive formula (4.12).

Determine whether or not the regular 9-gon is constructible by ruler and compass.

Is it possible to construct a square whose area is equal to that of a given triangle?

Let a be a real root of the polynomial x* + 3x + 1. Prove that & can not be constructed
by ruler and compass.

Given that 7 is a transcendental number, prove the impossibility of squaring the circle
by ruler and compass. (This means constructing a square whose area is the same as the
area of a circle of unit radius,)

Prove the impossibility of “duplicating the cube,” that is, of constructing the side length
of a cube whose volume is 2.

(a) Referring to the proof of Proposition (4.8), prove that the discriminant D iS negative
if and only if the circles do not intersect.

(b) Determine the line which appears at the end of the proof of Proposition (4.8) geo-
metrically if D = 0 and also if D < 0.

Pr}(C)ve that if a prime integer p has the form 2" + 1, then it actually has the form

27+ 1.

Let C denote the field of constructible real numbers. Prove that C is the smallest subfield

of R with the property that if a € C and a > 0, then Va € C.

The points in the plane can be considered as complex numbers. Describe the set of con-
structible points explicitly as a subset of C.

Characterize the constructible real numbers in the case that three points are given in the
plane to start with.

Let the rule for construction in three-dimensional space be as follows:

(i) Three non-collinear points are given. They are considered to be constructed.

(ii) One may construct a plane through three non-collinear constructed points.

(iii) One may construct a sphere with center at a constructed point and passing through
another constructed point.

(iv) Points of intersection of constructed planes and spheres are considered to be con-
structed if they are isolated points, that is, if they are not part of an intersection
curve.

Prove that one can introduce coordinates, and characterize the coordinates of the con-

structible points.

Symbolic Adjunction of Roots

. Let F be a field of characteristic zero, let f' denote the derivative of a polynomial

f € F[x], and let g be an irreducible polynomial which is a common divisor of fand f'.
Prove that g? divides f.
For which fields F and which primes p does x? — x have a multiple root?

. Let F be a field of characteristic p.

(a) Apply (5.7) to the polynomial x? + 1.

(b) Factor this polynomial into irreducible factors in F[x].

Let ay,..., ay be the roots of a polynomial f € F[x] of degree n in an extension field K.
Find the best upper bound that you can for [F(ai,...,an) : F].
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6. Finite Fields

I e

bl i

10.
11.
12.

13.

14.

15.

16.

Identify the group F,*.

Write out the addition and multiplication tables for F4 and for Z/(4), and compare them.

Find a thirteenth root of 3 in the field Fs.

Determine the irreducible polynomial over [ for each of the elements {6.12) of Fs.

Determine the number of irreducible polynomials of degree 3 over the field .

(a) Verify that (6.9, 6.10, 6.13) are irreducible factorizations over [F,.

(b) Verify that (6.11, 6.13) are irreducible factorizations over Z.

Factor x* — x and x* — x in F3. Prove that your factorizations are irreducible.

Factor the polynomial x'® — x in the fields (a) F, and (b) [s.

Determine all polynomials f (x) in F,[x] such that f () = 0 for all @ € Fy.

Let X be a finite field. Prove that the product of the nonzero elements of K 1s —1.

Prove that every element of [, has exactly one pth root.

Complete the proof of Proposition (6.19) by showing that the difference &« — 8 of two

roots of x9 — x is a root of the same polynomial.

Let p be a prime. Describe the integers n such that there exist a finite field K of order n

and an element & € K™ whose order in K™ is p.

Work this problem without appealing to Theorem (6.4).

(@) Let F = [F,. Determine the number of monic irreducible polynomials of degree 2 in
Flx).

(b) LeFt}(x) be one of the polynomials described in (a). Prove that K = F[x]/(f) is a
field containing p? elements and that the elements of X have the form a + ba, where
a,b € Fand ais a root of fin K. Show that every such element a + ba with b # 0
is the root of an irreducible quadratic polynomial in F[x].

(¢) Show that every polynomial of degree 2 in F[x] has a root in K.

(d) Show that all the fields K constructed as above for a given prime p are isomorphic.

The polynomials f(x) = x* + x + 1, g{x) = x* + x* + 1 are irreducible over [F>. Let

K be the field extension obtained by adjoining a root of f, and let L be the extension ob-

tained by adjoining a root of g. Describe explicitly an isomorphism from X to L.

(a) Prove Lemma (6.21) for the case F = C by looking at the roots of the two poly-
nomials.

(b) Use the principle of permanence of identities to derive the conclusion when F is an
arbitrary ring.

7. Function Fields

1.

Determine a real polynomial in three variables whose locus of zeros is the projected
Riemann surface (7.9).

Prove that the set #(U) of continuous functions on U’ forms a ring.

Let f(x) be a polynomial in F[x], where F is a field. Prove that if there is a rational func-
tion r(x) such that r* = f, then r is a polynomial.

Referring to the proof of Proposition (7.11), explain why the map F—— %(S) defined
by g(x)»w> g(X) is a homomorphism.
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5.

*7.
*8.

*9,

5.

Determine the branch points and the gluing data for the Riemann surfaces of the follow-
ing polynomials.

@yr—x*+1 My’ ~—x @y*~x—1 @ y*—xy ~x

@y -y —x Oy-—xx-1 @y -xx—-17 0y +xy’+x

) x¥»y*—xy—x

. (a) Determine the number of isomorphism classes of function fields X of degree 3 over

F = C{x) which are ramified only at the points =1.
(b) Describe the gluing data for the Riemann surface corresponding to each isomorphism
class of fields as a pair of permutations.
(¢) For each isomorphism class, determine a polynomial f(x, y) such that K = F[x]/(f)
represents the isomorphism class.
Prove the Riemann Existence Theorem for quadratic extensions.
Let § be a branched covering constructed with branch points «;,...,@r, curves
Ci,...,Cr, and permutations o,...,o,. Prove that S is connected if and only if the sub-
group 2 of the symmetric group S,, which is generated by the permutations o, operates
transitively on the indices 1,..., n.
It can be shown that the Riemann surface S of a function field is homeomorphic to the
complement of a finite set of points in a compact oriented two-dimensional manifold S.
The genus of such a surface is defined to be the number of holes in the corresponding
manifold §. So if § is a sphere, the genus of S is 0, while if S is a torus, the genus of § is
1. The genus of a function field is defined to be the genus of its Riemann surface. Deter-
mine the genus of the field defined by each polynomial.
@y —2=-Dx*—4) b)) y—x(x*—Dx*-4) @@y +y+x
@y —x(x—~1) (e y*~x(x - 1)

Transcendental Extensions

. Let K = F(a) be a field extension generated by an element a, and let 8 € K, 8 € F.

Prove that « is algebraic over the field F{B).
Prove that the isomorphism Q(7r) — Q(e) sending 7~ ¢ is discontinuous.
Let F C X C L be fields. Prove that tr degrL = tr degr K + tr deggL .

Let (o,...,an) C K be an algebraically independent set over F. Prove that an element
B € K is transcendental over F(a,,...,ay) if and only if (a,..., a,;B) is algebraically
independent.

Prove Theorem (8.3).

9. Algebraically Closed Fields

1.
2.

*3§

Derive Corollary (9.5) from Theorem (9.4).

Prove that the field F constructed in this text as the union of finite fields is algebraically
closed.

With notation as at the end of the section, a comparison of the images f(C,) for varying
radii shows another interesting geometric feature: For large r, the curve f(C,) has n
loops. This can be expressed formally by saying that its total curvature is 2zrn. For small
r, the linear term @,z + ao dominates f(z). Then f(C,) makes a single loop around ao. Its
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total curvature is only 2sr. Something happens to the loops and the curvature, as r varies.
Explain.

*4, If you have access to a computer with a good graphics system, use it to illustrate the vari-

ation of f(C,) with r. Use log-polar coordinates (log r, 8).

Miscellaneous Exercises

1.

*4.

*7.

*8.

*9,

Let f(x) be an irreducible polynomial of degree 6 over a field F, and let K be a quadratic
extension of F. Prove or disprove: Either f is irreducible over K, or else f is a product of
two Irreducible cubic polynomials over X.

(a) Let p be an odd prime. Prove that exactly half of the elements of F,™ are squares
and that if «, 3 are nonsquares, then af3 is a square.

(b) Prove the same as (a) for any finite field of odd order.

(c) Prove that in a finite field of even order, every element is a square.

. Write down the irreducible polynomial for & = V2 + V3 over Q and prove that it is

reducible modulo p for every prime p.

(a) Prove that any element of GLx(Z) of finite order has order 1,2, 3,4, or 6.

(b) Extend this theorem to GL+(Z), and show that it fails in GL4(Z).

Let ¢ be a real number, not *2. The plane curve C: x* + cxy + y2 = 1 can be

parametrized rationally. To do this, we choose the point (0, 1) on C and parametrize the

lines through this point by their slope: L;:y = tx + 1. The point at which the line L, in-

tersects C can be found algebraically.

(a) Find the equation of this point explicitly.

(b) Use this procedure to find all solutions of the equation x* + cxy + y?> = 1 in the
field F = [,, when c is in that field and ¢ ¥ *2.

(¢) Show that the number of solutions is p — 1, p, or p + 1, and describe how this
number depends on the roots of the polynomial > + ¢t + 1.

. The degree of a rational function f(x) = p(x)/q(x) € C(x) is defined to be the maxi-

mum of the degrees of p and g, when p, q are chosen to be relatively prime. Every ratio-

nal function f defines a map P'——> P’, by x~ws f(x). We will denote this map by f

too.

(@) Suppose that f has degree d. Show that for any point yo in the plane, the fibre f~'(yo)
contains at most d points.

(b) Show that f~'(y,) consists of precisely d points, except for a finite number of yo.
Identify the values yo where there are fewer than d points in terms of f and df /dx.

(a) Prove that a rational function f(x) generates the field of rational functions C(x) if and
only if it is of the form (ax + b)/(cx + d), with ad — bc # 0.

(b) Identify the group of automorphisms of C(x) which are the identity on C.

Let X/F be an extension of degree 2 of rational function fields, say K = C(f) and

F = C(x). Prove that there are generators x’',t’ for the two fields, such that

t = (at’ + B)/(yt' +6) and x = (ax’' + b)/(cx' + d), «,B,v,8,a,b,c,d € C,

such that 1’2 = x'.

Fill in the following outline to give an algebraic proof of the fact that K =

C(x)Lyl/(y* — x* + x) is not a pure transcendental extension of C. Suppose that X =

C(z) for some ¢. Then x and y are rational functions of ¢.
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(a) Using the result of the previous problem and replacing f by ¢’ as necessary, reduce to
the case that x = (at> + b)/(ct* + d).

(b) Say thaty = p(#)/q(z). Then the equation y> = x(x + 1){x — 1) reads
p(t (@’ +bla+ )2 +b+d){a—c)*+b—d

q(t)’ (ct” + dy’
Either the numerators and denominators on the two sides agree, or else there is can-
cellation on the right side.
(c) Complete the proof by analyzing the two possibilities given in (b).

*10. (a) Prove that the homomorphism SL,(Z)—— SL(F,) obtained by reducing the matrix
entries modulo 2 is surjective.

(b) Prove the analogous assertion for SL,,.
*11. Determine the conjugacy classes of elements order 2 in GL,(Z).




